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Abstract

Two recent papers (Opt. Lett. 28 (2003) 179; Appl. Opt. 42 (2003) 6710) show that the conventional
anomalous diffraction theory (ADT) can be reformulated by using the probability distribution function of
the geometrical paths of rays inside a scattering particle. In this study we further enhance the new ADT
formulation by introducing a dimensionless scaled projectile-length ð~lqÞ defined in the domain of the
cumulative projected-area distribution (q) of a particle. The quantity ~lq contains essentially all the
information about particle shape and aspect ratio, which, however, is independent of particle dimension
(e.g., large and small spheres have the same ~lq). With this feature of ~lq, the present ADT algorithm is
computationally efficient if a number of particle sizes and wavelengths are considered, particularly when a
random orientation condition is assumed. Furthermore, according to the fundamental ADT assumption
regarding the internal field within a scattering particle, we modify ADT on the basis of two rigorous
relationships that relate the extinction and absorption cross sections to the internal field. Two tuning
factors are introduced in the modified ADT solution, which can be determined for spheres by fitting the
modified ADT results to the corresponding Lorenz-Mie solutions. For nonspherical particles, the tuning
factors obtained for spheres can be used as surrogates. This approach is tested for the case of circular
see front matter r 2004 Elsevier Ltd. All rights reserved.
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cylinders whose optical properties can be accurately calculated from the T-matrix method. Numerical
computations show that the modified ADT solution is more accurate than its conventional ADT
counterpart.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Although a number of rigorous methods (see, Wriedt [1], Mishchenko et al. [2], Kahnert [3],
and references cited therein) have been developed for calculating the optical properties of
nonspherical particles, the anomalous diffraction theory (ADT) originally developed by van de
Hulst [4] is still an effective alternative for the computation of the extinction and absorption cross
sections of a particle when it is optically tenuous. The popularity of ADT is demonstrated by the
number of recent publications on this subject [5–15, e.g.]. The merits of ADT are its simplicity in
concept and efficiency in numerical computation, although this method suffers some short-
comings, such as missing the above-edge contribution as illustrated by Baran et al. [16]. Mitchell
[17] has substantially improved the accuracy of ADT in the spherical case by parameterizing the
missing physics, specifically, the internal reflection/refraction, photon tunneling, and edge
diffraction. The edge effect has been previously investigated by Jones [18,19] and Nussenzveig and
Wiscombe [20]. Most recently, Zhao and Hu [21] developed a general bridging technique to
include the particle edge contribution in the ADT computation.
In the ADT framework, the incident electromagnetic wave can be regarded as a number of

small localized waves that propagate towards a scattering particle along the incident direction
without divergence. The path of a localized wave, a straight ray-tube with a finite cross section, is
referred to as a projectile. The propagating direction and polarization configuration of the
internal field inside the particle are assumed to be the same as those of the incident wave.
However, the internal field suffers a phase delay due to the presence of the scattering particle. The
extinction cross section is associated with the phase interference of the individual projectiles,
whereas the corresponding absorption cross section is the summation of the absorption of all the
projectiles. For well-defined regular geometries such as spheres [4], spheroids [8], circular cylinders
[9–11], cubes [12,13] and hexagons [14], analytical ADT solutions can be obtained. It is unlikely
that an analytical ADT solution can be derived for a general nonspherical geometry. Thus, a
numerical method must be used to account for the contributions of individual projectiles. The
accuracy of the numerical computation depends on the dimensions of the cross sections of the
projectiles. In practice, the linear dimensions of the projectiles need to be much smaller than the
incident wavelength so that one can account accurately for the coherent phase interference of the
transmitted wave that penetrates the particle. If the size parameter (i.e., the ratio of particle size to
the incident wavelength) is large, however, the number of the projectiles required can be extremely
high, leading to a significant computational effort. The computational burden may be further
aggravated if the numerical computation needs to be reiterated for various size parameters and
spectral wavelengths, particularly when a random orientation condition is assumed for the
particles.
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The computation of the extinction and absorption cross sections in the ADT framework
is independent of the order in which the contributions of individual projectiles are accounted
for. For example, the ADT solution to the absorption cross section, given by a discrete
summation of the absorption of individual projectiles used in the numerical computations,
is irrelevant to the order of the projectiles in the summation. Furthermore, the projected-
area distribution (i.e., the percentage of the particle projected area that corresponds to
the projectile-length in a specific interval) is independent of the particle’s physical size if the
shape and aspect ratio of the particle remain the same. These features allow ADT to
be formulated in a more computationally efficient manner. Most recently, Xu et al. [22]
and Xu [23] introduced the probability distribution function of the geometric paths of rays
inside particles and reformulated the conventional ADT solutions for the extinction and
absorption cross sections of a particle. In terms of methodology, we notice that the
conventional ADT formulation and that developed by Xu et al. [22] are similar to the
line-by-line method and the k-distribution method, respectively. The line-by-line and k-
distribution methods are developed for calculating the gaseous spectral transmittance
over a given wavenumber interval. The details of the line-by-line and k-distribution
methods can be found in Goody and Yung [24], Liou [25], Chou and Kouvaris [26], Lacis and
Oinas [27], Fu and Liou [28], and Kratz [29]. Furthermore, we notice that the new ADT
formulation developed by Xu et al.[22] can be further enhanced to increase the computational
efficiency.
There are two goals for this study. First, to enhance the algorithm developed by Xu

et al.[22] and Xu [23], we introduce a dimensionless scaled projectile-length ð~lqÞ that is
specified in the domain of cumulative projected-area distribution (q). The scaled projectile
length quantitatively describes the behaviors of the distribution of projectile-length inside
the particle. Using ~lq, we develop a computationally efficient ADT algorithm. Second,
to reduce the errors of ADT for its implementation for moderate refractive indices, we
also modify the conventional ADT formulation by applying the ADT assumption for
the internal field to two rigorous relationships in classic electrodynamics, which relate
the extinction and absorption cross sections to the internal electric field inside the
particle.
This paper proceeds as follows. Section 2 presents the general ADT formulation in the domain

of the projectile-length distribution. A modified ADT method is presented in Section 3, and
Section 4 summarizes this study.
2. ADT algorithm in cumulative projected-area distribution domain

2.1. General formulation

The physical rationale associated with ADT for computing the extinction and absorption cross
sections (or efficiencies) of optically tenuous large particles has been well explained by van de
Hulst [4]. Without recapturing the physical base and the applicability criteria for ADT, we present
the conventional ADT formulae for computing the extinction and absorption cross sections of an
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arbitrarily shaped particle with a specific orientation as follows:

Cext ¼ 2Re

Z Z
P

½1� eiklðm�1Þ�dP

� �
;

¼ 2

Z Z
P

f1� e�klmi cos½klðmr � 1Þ�gdP (1)

and

Cabs ¼

Z Z
P

ð1� e�2klmi Þdp; ð2Þ

where k ¼ 2p=l is the wave constant in which l is the incident wavelength, m ¼ mr þ imi is
the complex refractive index of the particle, m, is the imaginary part of m. The integral domain in
Eqs. (1) and (2) are the projected area of the particle on a plane perpendicular to the incident
direction, and l is the length of the projectile segment within the particle.
As shown in Fig. 1, the incident wave is along the z-axis. The projectile-length within the

scattering particle can be expressed as follows:

l ¼ ẑ 
 ð r
*
� r

*
0Þ ¼ lðx; yÞ; ð3Þ

where ẑ is a unit vector along the z axis. The projectile-length, lðx; yÞ, depends on the location
where the incident projectile intercepts with a plane normal to the incident direction (i.e., the
plane P in Fig. 1). Analytical solutions to Eqs. (1) and (2) can be obtained for a limited set of
particle shapes such as spheres, spheroids, circulars, cylinders, cubes and hexagons. For
more complicated geometries that are quite often found in nature, such as bullet rosette
ice crystals in cirrus clouds [30,31], it is likely that a numerical method has to be used to evaluate
the integrals in Eqs. (1) and (2). Since the value of the extinction cross section is sensitive to the
phase interference of the transmitted wave, a fine resolution grid must be used to resolve the
variation of the projectile-length from its initial point ðx; yÞ within the projected area of the
particle on a plane normal to the incident direction. Thus, the projected area of the particle needs
to be divided into an enormous number of projectiles for the case of a moderate or large size
parameter. The integrals in Eqs. (1) and (2) are computed by discrete summations of the
contributions from individual projectiles. This approach is not efficient computationally if
multiple particle sizes and wavelengths are involved, particularly when random orientations are
assumed for particles with sizes much larger than the incident wavelength. To overcome this issue,
we start with the ADT formulation developed by Xu et al. [22] and Xu [23], which is given as
follows:

Cext ¼ 2RefP

Z
½1� eiklðm�1Þf ðlÞ�dlg; ð4Þ

and

Cabs ¼ P

Z
ð1� e�2klmi Þf ðlÞdl; ð5Þ

where P is the projected area of the particle. The quantity f ðlÞ is interpreted by Xu et al. [22] and
Xu [23] as the probability distribution function of the geometrical paths of rays inside the particle,
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Fig. 1. Geometric configuration illustrating the principle of the anomalous diffraction theory.
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since the anomalous diffraction extinction of light is viewed as a statistical process. The quantity
f ðlÞ can also be thought of as the fraction of particle projected area when the projectile-length is
between l � dl=2 and l þ dl=2, since the extinction and absorption processes associated with Eqs.
(1) and (2) are deterministic processes. It is interesting to note that the transform from Eqs. (1)
and (2) to Eqs. (4) and (5) is similar to the transform from the line-by-line method to the k-
distribution method developed for the computation of the mean gaseous transmittance for a
given spectral interval. The mean transmittance can be computed by integrating the
monochromatic transmittance in the wavenumber domain, an approach known as the line-by-
line method. Alternatively, it can be computed in the k (absorption coefficient) or cumulative k

distribution ðgÞ domain (i.e., the so-called k-distribution method). The absorption coefficient k is
usually a rapidly oscillating function in the wavenumber domain whereas the absorption
coefficient is a smooth function in the g domain. Thus, it requires much fewer quadrature points
to calculate the spectral transmittance in the g domain than in the wavenumber domain. To adopt
the methodology of the k-distribution method to improve the efficiency of ADT, Eqs. (4) and (5)
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are rewritten as follows:

Cext ¼ 2Re P

Z 1

0

f1� eiklmax ~lðm�1Þf ð~lÞgd~l

� �

¼ 2P

Z 1

0

f1� e�klmax ~lmi cos½klmax ~lðmr � 1Þ�gf ð~lÞd~l; (6)

and

Cabs ¼ P

Z 1

0

ð1� e�2klmax ~lmi Þf ð~lÞd~l; ð7Þ

where lmax is the maximum projectile-length for a particle with a given orientation; ~l, the scaled
projectile-length, is a dimensionless quantity, given by ~l ¼ l=lmax. For simplicity in the present
formulation without losing generality, we assume that the minimum projectile-length ðlminÞ is zero.
In the case when the minimum projectile-length is nonzero, the lower integral-limit in Eqs. (6) and
(7) should be ~lmin ¼ lmin=lmax. The quantity f ð~lÞ in Eqs. (6) and (7) is the fraction (percentage) of
the projected area (P) when the projectile-length is between lmaxð~l � d~l=2Þ and lmaxð~l þ d~l=2Þ. Note
that f ð~lÞ is normalized, that is, the following normalization condition holds:

Z 1

0

f ð~lÞd~l ¼ 1: ð8Þ

Furthermore, we define the cumulative fraction q associated with f ð~lÞ as follows:

qð~lÞ ¼

Z ~l

0

f ð~l
0
Þd~l

0
; ð9aÞ

or,

dq ¼ f ð~lÞd~l: ð9bÞ

Because f ð~lÞ is a non-negative quantity, q defined by Eq. (9a) is a monotonically increasing
function of ~l. Thus, there is a one-to-one mapping between ~l and q for the range ~l 2 ½0; 1�. By
taking the inverse of the cumulative distribution function, we can express ~l as a function of q, that
is

~lq ¼ ~lðqÞ; ð10Þ

where the subscript q indicates that the scaled projectile length is expressed in the q domain. From
Eqs. (6), (9b) and (11), the extinction cross section in the ADT frame can thus be given as follows:

Cext ¼ 2PRe

Z 1

0

½1� eiklmax ~lqðm�1Þ�dq

� �

¼ 2P

Z 1

0

f1� e�klmax ~lqmi cos½klmax ~lqðmr � 1Þ�gdq: (11)
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Similarly, for the absorption cross section, we have

Cabs ¼ P

Z 1

0

e�2klmax ~lqmi dq: ð12Þ

The extinction and absorption efficiencies corresponding to Eqs. (11) and (13) are given by

Qext ¼ Cext=P ¼ 2

Z 1

0

½1� e�klmax ~lqmi cos klmax ~lqðmr � 1Þ�dq; ð13Þ

and

Q ¼ Cabs=P ¼

Z 1

0

e�2klmax ~lqmi dq: ð14Þ

Note that Eqs. (11)–(15) are general expressions without being limited to a specific geometry.
Furthermore, the scaled projectile-length in the q domain is independent of the particle physical
size (e.g., ~lq is the same for a sphere with a radius of 100 mm as for one with a radius of 5 mm). This
feature implies that the computational effort can be reduced substantially if a range of particle
sizes is involved. For a given geometry, the key computational effort in the present method is to
derive the scaled projectile-length in the domain, which is defined by Eq. (11). As the simplest
example, Fig. 2 illustrates how to obtain ~lq in the case for a sphere. The maximum projectile-
length for a sphere is

lmax ¼ 2R; ð15Þ

where R is the radius of the sphere. From the geometric configuration shown in Fig. 2, we have

l ¼ 2R cos Z ¼ lmax cos Z: ð16Þ

The corresponding scaled projectile-length is given by

~l ¼ l=lmax ¼ cos Z: ð17Þ
Fig. 2. Geometry for deriving the distribution function of particle projected area as a function of the projectile-length.
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The fraction of the projected area, when the projectile-length is between lmax and l , is given by

A ¼ pR2sin2Z ¼ pR2ð1� ~l
2
Þ: ð18Þ

According to the physical meaning of f ð~lÞ, we have

f ð~lÞ ¼
1

pR2
dA

d~l

����
���� ¼ 2~l: ð19Þ

The corresponding cumulative fraction of the projected area, q, is given by

qð~lÞ ¼

Z ~l

0

f ð~l
0
Þd~l

0
¼ ~l

2
: ð20Þ

From Eqs. (18) and (21), q is in the range of [0,1] because of ~l 2 ½0; 1�. The projectile-length in the q

domain is given by

~lq ¼ q1=2: ð21Þ

It can be seen that the scaled projectile-length ~lq is independent of the physical size of a sphere.
The ADT solutions to the extinction and absorption cross sections of a sphere in the q domain are
given as follows:

Cext ¼ 2PRe

Z 1

0

f1� exp½iklmaxq
1=2ðm � 1Þ�gdq

� �
; ð22Þ

and

Cabs ¼ P

Z 1

0

½1� expð�2klmaxq
1=2miÞ�dq: ð23Þ

To show the equivalence of the preceding expressions to those given by the conventional
ADT, let q ¼ sin2x and w ¼ �iklmaxðm � 1Þ. The integral in Eq. (23) then reduces to the
following form

Cext ¼ 4PRe

Z p
2

0

ð1� e�w sin xÞ cos x sin xdx
� �

¼ 4PRe
1

2
þ
e�w

w
þ
e�w � 1

w2

� �
: (24)

The result given by Eq. (24) is exactly the same as the form given by van de Hulst [4]. Similarly,
the absorption cross section can be expressed as follows:

Cabs ¼ 2P

Z p
2

0

ð1� e�u sin xÞ cos x sin xdx

¼ 2P
1

2
þ
e�u

u
þ
e�u � 1

u2

� �
; (25)

where u ¼ 2klmaxmi. Again, in the computation of the absorption cross section, the present
formulation is equivalent to its conventional ADT counterpart [4].
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Fig. 3. (a) and (b): the incident configuration for the ADT computation in a case for a specifically oriented hexagon; (c): projected-area

distribution function, f ð~lÞ, for a sphere and a hexagon whose orientation is specified in (a) and (b); (d): scaled projectile-length
associated with f ð~lÞ in (c).
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Fig. 3 illustrates the computation of f ð~lÞ and ~lq in a case for a hexagonal geometry that is quite
interesting to atmospheric research because pristine ice crystals often possess hexagonal
structures. Figs. 3(a) and (b) show the orientation of the particle relative to the incident
projectiles. The incident direction is perpendicular to the symmetry-axis of the particle and
faces the broad side of the particle’s cross section. Thus, the ADT configuration associated with
Figs. 3(a) and (b) actually reduces to a 2-D case. It is evident from Fig. 3(b) that the maximum
projectile-length is lmax ¼

ffiffiffi
3

p
a in which a is the semi-width of the particle’s cross section. The

ratio of the area associated with lmax (i.e., the case when a projectile passes through two faces that
are parallel to each other) to the total projected area is 50%. The other half of the projected area
corresponds to ~l 2 ½0; 1Þ, a region that excludes the point ~l ¼ 1. Thus, the exact solution for f ð~lÞ is
given as follows:

f ð~lÞ ¼
1

2
þ
1

2
dð~l � 1Þ; ð26Þ
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where d is the Dirac delta function. From Eqs. (9a), (11) and (27), the scaled projectile-length in
the q domain can be given in the form of

~lq ¼
2q; for 0pqp0:5;
1; for q40:5:

�
ð27Þ

Fig. 3(c) and 3(d) show f ð~lÞ and ~lq given by Eqs. (27) and (28), respectively, which are compared
with their spherical counterparts. The effect of particle geometry on the distribution of projectile-
length is pronounced. As explained in the previous discussion, f ð~lÞ and ~lq are independent of
particle physical size. Thus, it is not proper to approximate a nonspherical particle with a specific
orientation using a sphere regardless of the definition of ’’spherical equivalence’’ (i.e., how a
spherical radius is specified for the ’’equivalence’’) in the computation of the extinction and
absorption cross sections in the ADT frame.
Results from the present ADT algorithm for the case for a nonspherical particle, specifically for

a hexagonal ice crystal with the incident configuration shown in Fig. 3, can be compared to the
analytical ADT solution derived by Sun and Fu [14]. The results are shown in Fig. 4 for the
extinction and absorption cross sections computed at a wavelength of 3:7 mm. The refractive index
of ice [32] at this wavelength is m ¼ 1:4þ 0:0072i. The two results are exactly the same, as is
evident from Fig. 4 in which the solid and dotted lines are overlapped. For an arbitrary
nonspherical geometry, it is difficult to obtain an analytical expression for f ð~lÞ or ~lq. In this case, a
numerical approach has to be used. Specifically, a rectangular area that bounds the projectile
projection on a plane normal to the incident direction is divided into a number of small area
elements (uniform square area elements in practice). Then it is determined whether the projectiles
associated with the small area elements interact with the particle. A projectile is disregarded in the
numerical computation if it does not strike the scattering particle; that is, only those projectiles
impinging on the particle are accounted for. We divide the range ½0; 1� into n uniform intervals for
~l; that is, the width of the interval is given by D~l ¼ 1=n. The projectile-lengths of all the projectiles
Fig. 4. Comparison of extinction and absorption efficiencies (Qext and Qabs) computed from the present ADT method in the q domain

and from an analytical ADT solution reported by Sun and Fu [14].
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that impinge on the particle are calculated sequentially. Let the number of the projectiles whose
lengths within the particle are between ðj � 1ÞD~l and jD~l be Nj. Thus, we have

f ½ðj � 1=2ÞD~l� ¼
Nj

D~l
Pn

i¼1Ni

: ð28Þ

The corresponding cumulative projected area distribution function q is given by

qj ¼ q½jD~l� ¼
Xj

k¼1

D~lf ½ðk � 1=2ÞD~l� ¼

Pj
k¼1NkPn
i¼1Ni

: ð29Þ

From Eq. (30), the numerical pairs of ð~lj; qjÞ with
~lj ¼ jD~l are obtained; i.e., the dimensionless

scaled projectile-length in the q domain is obtained, as ~lj can be regarded as a discrete value of the
function ~lðqÞ at q ¼ qj.

2.2. Randomly oriented particles

Consider an ensemble of nonspherical particles that are randomly oriented in space. As shown
in Fig. 5, the orientation of a nonspherical particle relative to the laboratory coordinate system,
oxyz, can be specified in terms of three angles: yp;jp, and b. The extinction and absorption cross
sections in the ADT frame for a specific orientation of the particle depend on angles yp and b
(note that in a rigorous scattering theory the extinction and absorption cross sections also depend
Fig. 5. Conceptual diagram showing the orientation of a nonspherical particle with respect to the incident direction.
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on the polarization configuration of the incident wave, i.e., the jp-dependence is involved). In the
conventional ADT algorithm, the ensemble-averaged (or orientation-averaged) extinction cross
section is given as follows:

hCexti ¼ 2ð4pÞ
�1Re

Z 2p

0

Z p

0

Z Z
P

½1� eiklðm�1Þ�dxp dyp sin yp dyp db
� �

; ð30Þ

where the integration over dxpdyp is carried out over the particle projected area. The preceding
expression is inefficient computationally since a four-order integral is involved. Moreover,
integration has to be repeated if various particle sizes are considered for multiple spectral
wavelengths. With the approach based on the distribution of projectile-length, the extinction cross
section given by Eq. (31) can be rewritten as follows:

hCexti ¼ 2ð4pÞ
�1Re

Z 2p

0

Z p

0

PðyP;bÞ
Z 1

0

½1� eiklmaxðyp;bÞ~lðm�1Þ�f ð~lÞd~l sin yp dyp db
� �

; ð31Þ

where lmaxðyp;bÞ is the maximum projectile-length for a specific particle orientation associated
with angles yp and b (see Fig. 5).
In the case for randomly orientated particles, we define the maximum projectile-length for an

ensemble of the particles as follows:

Lmax ¼ max½lmaxðyp;bÞ� for yp 2 ½0; p� and b 2 ½0; 2p�: ð32Þ

The dimensionless scaled projectile-length for the ensemble is

~L ¼ lmaxðyp; bÞ~l=Lmax: ð33Þ

The projectile-length distribution, f ð~lÞ, averaged over particle orientations, is given by

f ð ~LÞ ¼ ð4pPÞ�1
Z 2p

0

Z p

0

Pðyp; bÞf ð ~LÞs½lmaxðyp;bÞ=Lmax � ~L� sin yp dyp db; ð34Þ

where P is the ensemble-averaged projected area, given by

P ¼ ð4pÞ�1
Z 2p

0

Z p

0

Pðyp; bÞ sin yp dyp db: ð35Þ

For a convex geometry, P is S=4, in which S is the surface area of the geometry [33]. The function
in Eq. (35) is a step function, given by

sðxÞ ¼
0; for xo0;
1; for xX0:

�
ð36Þ

Givenf ð~lÞ, Eq. (32) can now be rewritten as follows:

hCexti ¼ 2PRe

Z 1

0

½1� eikLmax ~Lðm�1Þ�f ð ~LÞd ~L

� �

¼ 2P

Z 1

0

f1� e�kLmax ~Lmi cos½kLmax ~Lðmr � 1Þ�gf ð ~LÞd ~L: (37)

Eq. (37) is quite similar to Eq. (6) except that the latter is for the extinction cross section of a
particle with a specific orientation. From Eq. (37), we can define the cumulative percentage q for
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the ensemble of the randomly orientated particles as follows:

qð ~LÞ ¼

Z ~L

0

f ð ~L
0
Þd ~L

0
: ð38Þ

The cumulative percentage q is a monotonic function of ~L. Thus, we can express the scaled
projectile-length in the q domain as follows:

~Lq ¼ ~LðqÞ: ð39Þ

Note that ~Lq is independent of the physical sizes of the particles in the ensemble as long as the
relative size ratio (i.e., the ratio of the size of one particle to another) and morphological shape of
the particles remains the same. Based on Eqs. (39) and (40), the extinction and absorption cross
sections, after averaging over the ensemble of the particles, are given by:

hCexti ¼ 2Re P

Z 1

0

½1� eikLmax ~Lqðm�1Þ�dq

� �

¼ 2P

Z 1

0

f1� e�kLmax ~Lqmi cos½kLmax ~Lqðmr � 1Þ�gdq; (40)

and

hCabsi ¼ P

Z 1

0

½1� e�2kLmax ~Lqmi �dq: ð41Þ

The particle orientation information is required only in the computation of ~Lq. The size
independent property of ~Lq largely improves the ADT efficiency if various particle sizes are
involved.
Fig. 6a shows the scaled projectile-length, ~Lq, of hexagonal particles with various values of

aspect ratio (aspect ratio is defined as H=2a in which H is the length of the particle symmetry axis
Fig. 6. (a) dimensionless scaled projectile-length ~Lq for hexagons with various values of aspect ratios (H=2a); (b): the mean value of ~Lq

and V=ðPLmaxÞ.
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and a is the semi-width of a particle cross section). It is evident from Fig. 6a that ~Lq is quite
sensitive to the particle aspect ratio. For a given ~Lq, the mean scaled projectile-length is given by

h ~Lqi ¼

Z 1

0

~Lq dq: ð42Þ

Fig. 6b shows the mean scaled projectile-length corresponding to the results shown in Fig. 6a
where the ratio V=ðPLmaxÞ is also shown. An interesting point to note is that h ~Lqi ¼ V=ðPLmaxÞ.
For example, the mean value of the scaled projectile-length of the hexagonal column with an
aspect ratio 2.0, calculated from Eq. (43), is 0.32, which is exactly the value of V=ðPLmaxÞ. This
feature can be understood via the following relationship:

h ~Lqi ¼

Z 1

0

~Lq dq ¼

Z 1

0

~Lf ð ~LÞd ~L ¼

R R
P

Ldp

PLmax
¼

V

PLmax
: ð43Þ

Another interesting feature shown in Fig. 6(b) is that h ~Lqi as a function of the aspect ratio reaches
its maximum whenH ¼ 2a (i.e., compact hexagonal particles). Bryant and Latimer [34] developed
a simplified version of ADT for randomly orientated particles. They suggested that, in the ADT
framework, a randomly orientated particle with a volume V and a projected area P can be
converted to a cylinder with a thickness of de ¼ V=P with an incidence normal to the cross section
of the cylinder. From the present q domain ADT formulation, the projectile-length distribution
can be approximated by the following equation:

f ð ~LÞ ¼ dð ~L � V=P=LmaxÞ; ð44Þ

where d is the Dirac delta function. Thus, we have

hCexti ¼ 2PRe

Z 1

0

½1� eikLmax ~Lðm�1Þ�f ð ~LÞd ~L

� �

¼ 2PRe

Z 1

0

½1� eikLmax ~Lðm�1Þ�dð ~L � V=P=LmaxÞd ~L

� �

¼ 2Pf1� e�kdemi cos½kdeðmr � 1Þ�g; (45)

where de is often referred to as the effective size, given by de ¼ V=P. Sun and Fu [15] have shown
that the simplified ADT may introduce substantial errors for hexagonal ice crystals.
Fig. 7 shows the extinction and absorption efficiencies of the hexagonal ice crystals with various

aspect ratios at a wavelength of l ¼ 3:7 mm as functions of size parameter pLmax=l. Here
Lmax ¼ ðH2 þ 4a2Þ1=2, where H is the length of the symmetry axis of the particle and a is the semi-
width of the particle cross section. Because f ð~lÞ is sensitive to the particle aspect ratio, Qext and
Qabs are quite different for the different values of H=2a. The left panel of Fig. 7 shows
the efficiencies of hexagonal ice crystals with various aspect ratios. For a given size parameter
(pLmax=l), the absorption efficiency of compact hexagonal ice crystals (i.e., H=2a ¼ 1) is at the
maximum, as is evident from the right panel of Fig. 7. This occurs because h ~Lqi reaches its
maximum values when H=2a ¼ 1, as shown in Fig. 6b.
As an example of applying the present ADT formulation to complex particle geometries, Fig. 8

shows the extinction and absorption efficiencies of the bullet rosette ice crystals with various
branches at a wavelength of l ¼ 3:7 mm as a function of size parameter 2pr=l in which r is the
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Fig. 7. (a) Extinction efficiencies of hexagons with various aspect ratios; and (b) absorption efficiencies corresponding to Qext showed

in (a).

Fig. 8. Extinction and absorption efficiencies of bullet rosettes with various branches.
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diameter of the volume-equivalent sphere. The sensitivity of Qext and Qabs to the number of bullets
is evident. In particular, the absorption efficiency decreases with the increase of branch number
although the size parameters in Fig. 8 are defined on the basis of volume-equivalence.
3. Modified ADT formulation

The essence of ADT is that the amplitude and polarization of the electromagnetic waves inside
an optically tenuous scattering particle is the same as those of the incident wave. Given the
geometry shown in Fig. 1, the internal electric field can be expressed as follows:

E
*
ð r
*
Þ ¼ E

*

o expðikẑ 
 r
*

oÞ exp½ikmẑ 
 ð r
*
� r

*
oÞ�: ð46Þ
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where E
*

o is the amplitude of the incident electric field, and r
*

o is the position vector of the incident
point. From the basic physical principles associated with classic electromagnetic scattering
(e.g., Mishchenko et al. [35], Bohren and Huffman [36], Yang and Liou [37] and references cited
therein):, the extinction and absorption cross sections can be expressed exactly as follows:

Cext ¼ Im
k

EoE�
o

ðm2 � 1Þ

Z Z Z
v

E
*
ð r
*0

Þ 
 E
*�

ð r
*0

Þd3r0
� �

; ð47Þ

and

Cabs ¼
k

EoE�
o

2mrmi

Z Z Z
v

E
*
ð r
*0

Þ 
 E
*�

ð r
*0

Þd3r0; ð48Þ

where the asterisk denotes the complex conjugate. Using Eq. (47) and integrating the field along
projectiles, Eqs. (48) and (49) reduce to

Cext ¼ Re ðm þ 1Þ

Z Z
P

½1� eiklðm�1Þ�dp

� �
; ð49Þ

and

Cabs ¼ mr

Z Z
P

ð1� e�2klmi Þdp: ð50Þ

The preceding expressions for the extinction and absorption cross sections are quite similar to the
conventional ADT solutions. In fact, when the refractive index of the particle is close to 1 (i.e.,
(m þ 1Þ ! 2 and mr ! 1), the conventional ADT solutions and those given by Eqs. (50) and (51)
are essentially the same. However, we note that the extinction efficiently corresponding to Eq. (50)
approaches an asymptotic value of ðm þ 1Þ when the scattering particle is large and strongly
absorptive. This is in conflict with the physically correct solution (i.e., an asymptotic solution of
2). The fundamental mechanism for this inaccuracy is that the assumption given by Eq. (47)
introduces greater errors for large particles than for small particles. For a small particle, the
induced field due to the existence of the particle is weak in comparison with the incident field and
Eq. (47) is a good approximation in this case. To overcome this shortcoming in the modified
ADT, we rewrite Eqs. (50) and (51) as follows:

Cext ¼ Re 2

Z Z
p

½1� e�iklðm�1Þ�dP þ ðm � 1Þ

Z Z
p

½1� e�iklðm�1Þ�dP

� �
; ð51Þ

and

Cabs ¼

Z Z
p

ð1� e�2klmi ÞdP þ ðmr � 1Þ

Z Z
p

ð1� e�2klmi ÞdP: ð52Þ

The first terms on the right-hand sides of Eqs. (52) and (53) correspond to the standard ADT
solutions, whereas the second terms are associated with errors caused by the approximation for
the internal field by Eq. (47) as applied to Eqs. (50) and (51). To ensure that the solutions given by
Eqs. (52) and (53) approach their physically correct asymptotic values, we need to add artificial
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diffusion terms in Eqs. (52) and (53) in the form of:

Cext ¼ Re 2

Z Z
p

½1� e�iklðm�1Þ�dP þ e��1V=Pðm � 1Þ

Z Z
p

½1� e�iklðm�1Þ�dP

� �
; ð53Þ

and

Cabs ¼

Z Z
p

ð1� e�2klmi ÞdP þ e��2V=Pðmr � 1Þ

Z Z
p

ð1� e�2klmiÞdP; ð54Þ

where V and P are the particle volume and the oriented averaged projected-area, respectively .
The constants �1 and �2 in Eqs. (54) and (55) are two tuning factors, which can be determined from
a comparison of Eqs. (54) and (55) with the corresponding Lorenz-Mie solutions. The values of �1
and �2 determined in the spherical case can be used as surrogates for nonspherical particles.
Fig. 9. Extinction and absorption efficiencies of spheres computed for the Lorenz-Mie theory, the conventional ADT, and the

modified ADT at a wavelength of 3:7 mm.
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Fig. 9 shows the comparison of the values of Qext and Qabs computed from the Lorenz-Mie
theory, the conventional ADT, and the modified ADT. The best fitting values for �1 and �2 are
0.0435 and 0.011. The absolute and relative error between the ADT method and the exact
solutions are defined as follows:

Errorabsolute ¼
Qexact � QADT

Qexact

; ð55Þ

and

Errorrelative ¼
Qexact � QADT

Qexact

� 100%; ð56Þ

where Qexact represents the Lorenz-Mie solution for the extinction (or absorption) efficiency, and
QADT represents the corresponding solution from the conventional ADT method or the present
modified ADT method. It is evident from Fig. 10 that both absolute and relative errors computed
Fig. 10. Same as Fig. 9 except for a wavelength of 11 mm and different tuning factors.
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from the present method are much smaller than their conventional counterparts. Note that the
absolute error of the modified ADT for Qexact can be slightly larger than that for the conventional
ADT when the size parameter is less than 5.
Fig. 10 is similar to Fig. 9 except for a wavelength of 11 mm. The refractive index for the ice at

this wavelength is 1:0925þ 0:248i. Again, it is evident that the modified ADT solution is much
more accurate than the conventional ADT results, if the two tuning factors �1 and �2 are properly
selected.
For general nonspherical particles, the tuning factors cannot be known. However, we can use

the tuning factors determined for spheres as surrogates for nonspherical particles. To validate this
approach, we apply the tuning factors determined for spheres to the case for circular cylinders.
Figs. 11 and 12 show the comparisons of the T-matrix solutions [38], the modified ADT solutions,
Fig. 11. Extinction and absorption efficiencies computed from the T-matrix method [37] and the conventional ADT, and the modified

ADT at a wavelength of 3:7 mm. Note that in the modified ADT the tuning factors are same as those shown in Fig. 9 for spheres.
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Fig. 12. Same as Fig. 11 except for a wavelength of 11 mm and tuning factors shown in Fig. 10.
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and the conventional ADT results. The improvement associated with the modified ADT method
is evident from both Figs. 11 and 12.
4. Summary

Recently, Xu et al. [22] and Xu [23] reformulated the conventional ADT by introducing the
probability distribution function of the geometric paths of rays inside a scattering particle. In this
study, we further enhance their formulae. A scaled projectile length is introduced in the q (the
cumulative distribution of the particle projected-area) domain, which is independent of particle
physical size as long as the particle shape remains the same (e.g., the projectile-length distribution
for a sphere with a 100 mm radius is the same as for a sphere with a radius of 5 mm). The ADT
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solutions to the extinction and absorption cross sections can be formulated as integrations with
respect to the cumulative projectile-length distribution. In this ADT formulation, the information
on particle shape is essentially contained in the dimensionless scaled projectile-length specified in
the q domain. We show that the present ADT algorithm is the same as the conventional ADT
algorithm for spheres and nonspherical particles under specific and random orientation
conditions. We also show the simplified ADT algorithm given by Bryant and Latimer [34] is
fundamentally based on a simplification of the projectile-length distribution function in terms of
the Dirac delta function.
Furthermore, by assuming that the internal field inside a particle is the same as that in the

conventional ADT frame, we develop a modified version of ADT that introduces two tuning
factors. These tuning factors can be determined in a spherical case by the best fitting of the ADT
solution to the Lorenz-Mie results. For nonspherical particles, the tuning factors obtained in a
spherical case can be used as surrogates. This approach is validated in the case for circular
cylinders whose optical properties can be obtained by the exact T-matrix method.
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